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Abstract Breeders desire populations with a high mean
performance and a large genetic variance. Theory and
methods are lacking for predicting additive variance
(»

A
) and testcross variance (»

T
) in biparental popula-

tions. Breeders have unsuccessfully attempted to pre-
dict »

A
based on the coefficient of coancestry ( f ) or

molecular-marker similarity between parents. In this
paper, we derive the expected values of »

A
and »

T
in

biparental populations, examine the variability of
»
A

among biparental crosses, and discuss how »
A

and
»
T

may be predicted in applied breeding programs.
Suppose i is a recombinant inbred derived from the
cross between inbreds P

1
and P

2
, and inbred j is not

a direct descendant of i. Let »
A(i, j)

be the additive
variance in the F

2
of the (i]j) biparental cross. Let

»
T(i, j)

be the variance among testcrosses of F
2

indi-
viduals with a specific unrelated inbred or population.
Assuming linkage equilibrium and the absence of
epistasis, »

A(i, j)
"j»

A (P1, j)
#(1!j) »

A(P2, j)
, where

j"parental contribution of P
1

to i. Similarly, »
T(i, j)

"

j»
T(P1, j)

#(1!j) »
T(P2, j)

. Additive variance in crosses
between recombinant inbreds cannot be modelled as
a function of f if, as indicated in the literature, »

A
differs

among crosses of founder inbreds. If molecular-marker
similarity between parents is used as an estimate of f,
then a strong linear relationship is likewise not ex-
pected between »

A
and marker similarity. Differences

between the actual and expected j led to variation in
»
A
. In applied breeding programs, modelling »

A
or

»
T

in biparental crosses may be feasible with estimates
of »

A
or »

T
in prior crosses and information on j ob-

tained from molecular-marker data.
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Introduction

New inbreds are commonly developed from crosses
between elite inbreds. For self-pollinated crops, such as
oat (Avena sativa L.) and soybean [Glycine max (L.)
Merr.], progenies are evaluated for their performance
as lines per se. For hybrid crops, such as maize (Zea
mays L.), progenies are evaluated for their performance
when crossed with an inbred tester. Biparental popula-
tions with a high mean performance and a large genetic
variance — either on a per se or testcross basis — are
desired to increase the chance of finding superior
recombinants.

The number of potential biparental populations in
a breeding program can be prohibitively large. For
example, if a breeder has 25 elite inbreds, there are 300
potential biparental populations for developing
new inbreds. Methods for predicting both the mean
performance and the genetic variance of biparental
populations would help the breeder choose the most
promising biparental populations for inbred develop-
ment. The mean performance of recombinant inbreds,
selfed from a cross between two parental inbreds, is
typically predicted as the average per se performance of
the two parents, i.e., the midparent value (Panter and
Allen 1995). Likewise, the mean performance of a bi-
parental population when crossed to an inbred tester
can be predicted as the average performance of the two
parents when crossed to the same tester (Bauman 1959).
Theory and methods are lacking, however, for predic-
ting per se additive variance (denoted »

A
) and testcross

variance (denoted »
T
) in biparental populations.

Falconer and Mackay (1996, p 264) noted that with
inbreeding the additive variance in a population is
equal to »

A
"»@

A
(1!F), where »@

A
"additive variance



Table 1 Classes of loci that differentiate inbreds P
1
, P

2
, and j

Class of (P
1
]P

2
)F

2
(P

1
]j)F

2
(P

2
]j)F

2
Number of loci

loci

I Segregating Segregating Segregating n
1

[numbered 1 to n
1
]

[a
k(P1,P2)

]! [a
k(P1,j)

] [a
k(P2,j )

]
II Segregating (a

k
) Segregating (a

k
) Not segregating n

2
[numbered (n

1
#1) to (n

1
#n

2
)]

III Segregating (a
k
) Not segregating Segregating (a

k
) n

3
[numbered (n

1
#n

2
#1) to (n

1
#n

2
#n

3
)]

IV Not segregating Segregating (a
k
) Segregating (a

k
) n

4
[numbered (n

1
#n

2
#n

3
#1) to

(n
1
#n

2
# n

3
#n

4
)]

!Half the difference, for the kth locus in each class, between the mean values of the homozygous genotypes in the F
2

population

in the non-inbred base population and F"coefficient
of inbreeding. This relationship between »

A
and F

holds true when dominance is absent or when allele
frequencies are 0.5. In a cross between two homozygous
parents, F is equal to the coefficient of coancestry ( f ),
i.e., the probability that, at a given locus, the two
parents have alleles that are copies of the same ances-
tral allele. In practice, biparental populations are com-
monly formed from related parents ( f'0). Studies
have been conducted to examine the relationship be-
tween »

A
and both f and molecular-marker similarity

between parents in oat (Cowen and Frey 1987; Souza
and Sorrells 1991; Moser and Lee 1994) and soybean
(Helms et al. 1997; Kisha et al. 1997; Manjarrez-Sand-
oval et al. 1997). In these studies, »

A
for several traits

was greater in crosses between unrelated or distantly
related parents than in crosses between closely related
parents. But, contrary to theoretical expectations, the
linear relationship between »

A
and f or between »

A
and

marker similarity was not strong enough to permit
routine prediction of »

A
.

Our objectives were to: (1) derive the expected values
of »

A
and »

T
in biparental populations, (2) examine the

variability of »
A

in biparental crosses given different
genetic models by computer simulation, and (3) discuss
how »

A
and »

T
may be modelled in applied breeding

programs. The results from this study give clear reasons
for the lack of relationship, as indicated in the litera-
ture, between »

A
and both F and marker similarity

between parents.

Theory and methods

Additive variance

Suppose inbreds P
1

and P
2

are crossed to form a biparental popula-
tion. Recombinant inbreds are developed, by continuous selfing
until homozygosity, from the (P

1
]P

2
)F

2
population or from the bth

backcross population where P
1

is the recurrent parent. Let i be
a random recombinant inbred line from the (P

1
]P

2
) biparental

cross. The parental contribution of P
1

to i is denoted as j, whereas
the parental contribution of P

2
to i is (1!j). Expected values of

j [i.e., E(j)] are 0.5 if i is selfed from the F
2
, 0.75 if i is selfed from the

BC
1
, and (1!0.5b`1) if i is selfed from the bth backcross. Let j be

any inbred that is not a direct descendant of i.

Let »
A(i, j)

be the additive variance in the F
2
of the biparental cross

in parentheses.The »
A

in the (i]j) cross can be derived as a function
of »

A
in the (P

1
]j) and (P

2
]j) crosses. Four classes of loci differenti-

ate P
1
, P

2
, and j (Table 1). The numbers of loci (n

1
, n

2
, n

3
, and n

4
)

differ among the four classes. Three alleles per locus are present in
Class I whereas two alleles per locus are present in Classes II, III, IV.
Half the difference between the mean values of the homozygous
genotypes is denoted as a

k
for the kth locus in Classes II, III, and IV.

For Class-I loci, a
k

varies according to the parents, i.e., a
k(P1,P2)

in
the (P

1
]P

2
)F

2
, a

k(P1, j )
in the (P

1
]j)F

2
, and a

k(P2, j)
in the (P

2
]j)F

2
.

The »
A

for per se performance in the (P
1
]j)F

2
population is

»
A (P1, j)

"+n1
k/1

2pq a2
k(P1,j)

#+n1`n2
k/n1`1

2pq a2
k

#+n1`n2`n3`n4
k/n1`n2`n3`1

2pq a2
k

"1/2 +n1
k/1

a2
k(P1,j)

#1/2+n1`n2
k/n1`1

a2
k

#1/2 +n1`n2`n3`n4
k/n1`n2`n3`1

a2
k

"1/2 D
1
#1/2 D

3
#1/2 D

5
,

where: p"0.5, the frequency of the favorable allele at every seg-
regating locus in the (P

1
]j)F

2
population; q"0.5, the frequency of

the less favorable allele at every segregating locus in the (P
1
]j)F

2population; and the ‘‘D’’ notations are those used by Mather and
Jinks (1982, p 136). Linkage equilibrium and the absence of epistasis
are assumed. Dominance may be present because it has no influence
on »

A
when p"q"0.5. The »

A
in the (P

2
]j)F

2
population is:

»
A(P2, j)

"1/2 +n1
k/1

a2
k(P2,j)

#1/2+n1`n2`n3
k/n1`n2`1

a2
k

#1/2+n1`n2`n3`n4
k/n1`n2`n3`1

a2
k

"1/2 D
2
#1/2 D

4
#1/2 D

5
.

For Class-I loci, which segregate in the (P
1
]P

2
) cross, j of the

recombinant inbreds would inherit the allele from P
1

and (1!j) of
the recombinant inbreds would inherit the allele from P

2
. The »

A
in

the (i]j) cross at Class-I loci is:

[j 1/2+n1
k/1

a2
k(P1, j)

#(1!j) 1/2 +n1
k/1

a2
k(P2, j)

]

"j 1/2 D
1
#(1!j) 1/2 D

2
.

For Class-II loci, which segregate in the (P
1
]P

2
) cross, j of the

recombinant inbreds would inherit the allele from P
1
and would thus

segregate in the (i]j) cross. The remaining (1!j) of the recom-
binant inbreds would inherit the allele from P

2
and would not

segregate in the (i]j) cross. The »
A

in the (i]j) cross at Class-II loci
is:

j 1/2 +n1`n2
k/n1`1

a2
k
"j 1/2 D

3
.

117



In the same manner, for all Class-III loci, the »
A

in the (i]j) cross is:

(1!j) 1/2 +n1`n2`n3
k/n1`n2`1

a2
k
"(1!j) 1/2 D

4
.

For Class-IV loci, all recombinant inbreds from the (P
1
]P

2
) cross

would be homozygous for the same allele and all loci would segre-
gate in the (i]j) cross. The »

A
in the (i]j) cross is:

1/2 +n1`n2`n3`n4
k/n1`n2`n3`1

a2
k
"1/2 D

5
.

Summing across the four classes, the »
A

for per se performance in the
(i]j)F

2
is:

»
A(i, j)

"j 1/2 D
1
#(1!j) 1/2D

2
#j 1/2 D

3
#(1!j) 1/2 D

4
#1/2 D

5

"j »
A(P1,j)

#(1!j) »
A(P2,j)

. (Eq. 1)

Therefore, the expected »
A

in the cross between an inbred ( j) and
a recombinant inbred from a biparental cross is equal to the
weighted (by parental contribution) average of the »

A
between j and

the parents of the biparental cross.

Testcross variance

Suppose the individuals in the (i]j)F
2

are testcrossed with an
unrelated inbred or population. The »

T
in the (i]j)F

2
can be derived

as a function of the »
T

in the (P
1
]j) and (P

2
]j) crosses. We assume

an arbitrary number of alleles (t
k
) at the kth locus in the tester, and t

k
"1 with an inbred tester. Two alleles are present at each segregat-
ing locus in the F

2
of a biparental cross. At a single locus, the average

testcross genotypic value of the favorable allele in the F
2

is
k
1
"&tk

m/1
p
m

k
1m

, where: p
m
"frequency of the mth allele in the

tester; and k
1m

"value of the genotype formed by the favorable
allele from the F

2
and the mth allele from the tester. For the less

favorable allele in the F
2
, the average testcross genotypic value is

k
2
"&tk

m/1
p
m

k
2m

, where k
2m

"value of the genotype formed by the
less favorable allele from the F

2
and the mth allele from the tester.

The average effect of an allele substitution in the (F
2
]tester) popu-

lation (Melchinger 1987) is aT"k
1
!k

2
. With linkage equilibrium,

arbitrary dominance, and the absence of epistasis, the variance
among testcrosses (Rawlings and Thompson 1962) in the (P

1
]j)F

2
,

(P
2
]j)F

2
, and (i]j)F

2
populations are:

»
T(P1,j)

"1/8 +n1

k/1
[aT

k(P1,j)
]2#1/8+n1`n2

k/n1`1
[aT

k
]2

#1/8 +n1`n2`n3`n4
k/n1`n2`n3`1

[aT
k
]2

»

T(P2,j)
"1/8 +n1

k/1
[aT

k(P2,j)
]2#1/8 +n1`n2`n3

k/n1`n2`1
[aT

k
]2

#1/8 +n1`n2`n3`n4
k/n1`n2`n3`1

[aT
k
]2

»

T(i,j)
"j 1/8 +n1

k/1
[aT

k(P1,j)
]2#(1!j)1/8 +n1

k/1
[aT

k(P2,j)
]2

#j 1/8 +n1`n2
k/n1`1

[aT
k
]2#(1!j)1/8 +n1`n2`n3

k/n1`n2`1
[aT

k
]2

#1/8 +n1`n2`n3`n4
k/n1`n2`n3`1

[aT
k
]2

"j »

T(P1,j)
#(1!j) »

T(P2,j)
, (Eq. 2)

where: aT
k(P1,j)

"average effect of an allele substitution at the kth
Class-I locus in the [(P

1
]j)F

2
]tester] population; aT

k(P2, j)
"aver-

age effect of an allele substitution at the kth Class-I locus in the
[(P

2
]j)F

2
]tester] population; and aT

k
"average effect of an allelic

substitution at the kth Class-II, -III, or -IV locus segregating in the
[(i]j)F

2
]tester] population. As indicated by the ¹ in superscript,

the aT
k(P1,j)

, aT
k(P2,j)

, and aT
k

parameters are dependent on the unre-
lated tester (Melchinger 1987).

Variability in »
A

among biparental crosses

The variability in »
A
, caused by deviations of the actual j from

E(j) in biparental crosses (Bernardo et al. 1997), was investigated
by computer simulation. Inbreds A, B, and C were founder
inbreds that were unrelated to each other and were homozygous
for three different alleles at each locus. Recombinant inbred D was
randomly derived from the (A]B)]A backcross [E(j

D
)"0.75,

the proportion of alleles received by the inbred in subscript
from the first parent listed in the pedigree]. Recombinant
inbred E was derived at random from the (B]C) cross
[E(j

E
)"0.50]; F from the (B]D) cross [E(j

F
)"0.50]; G from the

(D]E)]D backcross [E(j
G
)"0.75]; and H from the (F]G) cross

[E(j
H
)"0.50].

We studied three genetic models that differed in the distribution of
allelic effects across n loci. In Model I, allelic effects were equal
across n"50 or 200 loci in each founder inbred. The genotypic
values at each locus were 30/Jn in A, 24/Jn in B, and 20/Jn in C.
Therefore, values of a

k
were 0.5(30/Jn!24/Jn)"3/Jn in the

(A]B) cross, 5/Jn in the (A]C) cross, and 2/Jn in the (B]C) cross.
In Model II, the genotypic values across n"50 or 200 loci were
normally-distributed with (1) a mean of 30/Jn in A, 24/Jn in B, and
20/Jn in C; and (2) a variance of 1/n in each of the three founder
inbreds. Models I and II were characterized by a heterogeneous
»
A

in crosses among the founder inbreds. In the third model (homo-
geneous variance), »

A
was homogeneous among the (A]B), (A]C),

and (B]C) crosses. A homogeneous »
A

was simulated with the
following values of a

k
at n"99 loci: (i) 3/Jn in the (A]B) cross,

5/Jn in the (A]C) cross, and 2/Jn in the (B]C) cross for loci 1 to
33; (2) 2/Jn in the (A]B) cross, 3/Jn in the (A]C) cross, and 5/Jn
in the (B]C) cross for loci 34 to 66; and (3) 5/Jn in the (A]B) cross,
2/Jn in the (A]C) cross, and 3/Jn in the (B]C) cross for loci
67 to 99.

Genotypes of A, B, C at each of the n loci were simulated for each
genetic model. Genotypes of recombinant inbreds D, E, F, G, and
H were simulated 10 000 times, given their pedigrees and the geno-
types of A, B, and C. For each of the 10 000 simulations, values of
»
A

summed across the n loci were calculated for each pair of inbreds.
The 10 000 »

A
values for each pair of inbreds were sorted in ascend-

ing order. The 250th value was considered the lower limit whereas
the 9750th value was considered the upper limit of a 95% confidence
interval on »

A
.

Results and discussion

The relationship between »
A

and F was linear only
when »

A
was homogeneous among crosses of the three

founder inbreds (Fig. 1). This result was in accordance
with the theoretical relationship between »

A
and

F given by Falconer and Mackay (1996, p 264). With
Models I and II, in which »

A
differed in crosses among

the founder inbreds, »
A

tended to be larger in crosses
among distantly related inbreds than among closely
related inbreds. However, the inverse linear relation-
ship between »

A
and F in biparental crosses was not

strong, especially with F*0.25. Values of »
A

were
often larger when F'0.5 than when F"0.5. Also,
»
A

was larger with F"0.34 than with F"0.25. Mul-
tiple values of »

A
were observed at a given F. For

example, »
A

was larger in the (C]G) cross than in the
(D]E) cross although both crosses had F"0.13
(Fig. 2). Three biparental crosses with F"0 differed in
»
A

for Models I and II (Fig. 1).
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Fig. 1 Relationship between additive variance (»
A
) and the inbreed-

ing coefficient (F) in biparental populations when »
A

is equal among
crosses of three founder inbreds (homogeneous variance), allelic
effects are constant across loci in each founder inbred (Model I), and
allelic effects are normally distributed across loci in each founder
inbred (Model II). Values represent the average »

A
with 50 and 200

loci. The »
A

in crosses among founder inbreds is excluded. Values of
»
A

were identical for two biparental populations with F"0.50, two
with F"0.63, and two with F"0.77

The simulation results confirmed that the expected
»
A

in biparental crosses can be determined with Eq. 1,
regardless of whether allelic effects were constant
(Model I) or variable (Model II) across loci. The results
for Model I indicated that differences due to sampling
(i.e., genetic drift) between actual j and E(j) led to
variability in »

A
. For each biparental cross involving

a recombinant inbred, »
A

varied with repeated simula-
tions (Fig. 2). The total »

A
for each genetic model was

the same regardless of the number of loci controlling
the trait. Yet the variation in »

A
was larger when the

trait was controlled by fewer loci (n"50), each with
larger effects, than by more loci (n"200), each with
smaller effects. The variation in »

A
with repeated simu-

lations generally decreased as F increased. Exceptions
to this trend were the (B]E) and (C]E) crosses, which
had the least variation in »

A
despite having only an

intermediate value of F (0.5).
We also investigated the variability in »

A
with addi-

tional founder inbreds (i.e., five instead of three) and
a different number of loci (i.e., 100). The results are not
presented because these simulations did not provide
any new information, but they confirmed that: (1) the
expected »

A
can be determined with Eq. 1, and (2) the

variation in »
A

among biparental crosses decreases as
the number of loci increases.

The relationship between »
T

in the (i]j)F
2

and in
the (P

1
]j) and (P

2
]j) crosses is analogous to that for

»
A
. The lack of a strong linear relationship between

F and »
A

implies a similar lack of linear relationship
between F and »

T
when »

T
varies among crosses of

founder inbreds. Assume the tester is fixed for the less

favorable allele. The aT
k

and a
k

quantities are equal
when dominance is absent (Rawlings and Thompson
1962). At a single locus, »

T
"1/8(aT

k
)2"1/8a2k and

»
A
"1/2 a2

k
. With equal allelic effects (Model I) and no

dominance across all loci, the values of »
T

in all of the
biparental crosses are equal to one-fourth of the corres-
ponding »

A
in Figs. 2 a and b. With equal allelic effects

and complete dominance at all loci, aT
k

is equal to 2a
k
,

and the values of »
T

in all of the biparental crosses are
equal to the corresponding »

A
in Figs. 2 a and b. But

the ratio between »
T

and »
A

varies among biparental
crosses if allelic effects, the level of dominance, or both,
vary across loci. Let c

P1
"»

T(P1,j)
/»

A(P1,j)
and c

P2
"

»
T(P2,j)

/»
A(P2,j)

. In this situation »
T(i,j)

"j c
P1
»
A(P1,j)

#

(1!j) c
P2
»
A(P2,j)

. Hence the ratio between »
T

and »
A

is
constant in all biparental crosses only if the ratio be-
tween »

T
and »

A
is constant among all crosses among

the founder inbreds, i.e., c
P1
"c

P2
. But, even if »

T
can-

not be expressed as a constant proportion of »
A
, our

simulation results (data not shown) indicated that, as
with »

A
, (1) the expected »

T
can be determined with

Eq. 2 and (2) the variation in »
T

among biparental
crosses decreases as the number of loci increases.

Helms et al. (1997) obtained »
A

estimates for soybean
yield of 65 000, 29 000, and 78 100 kg ha~2 in three
biparental crosses with unrelated parents (F"f"0).
Such variation in »

A
in crosses among unrelated foun-

der inbreds probably caused the lack of a strong linear
relationship between »

A
and f in the empirical studies

by Cowen and Frey (1987), Souza and Sorrells (1991),
Moser and Lee (1994), Helms et al. (1997), Kisha et al.
(1997), and Manjarrez-Sandoval et al. (1997). If molecu-
lar-marker similarity is used merely as a substitute for
pedigree-based f, then a strong linear relationship be-
tween »

A
and molecular-marker similarity is likewise

not expected.
Modelling »

A
or »

T
in biparental crosses among

recombinant inbreds requires estimates of (1) »
A

or
»
T

in prior crosses and (2) the parental contribution to
recombinant inbreds (j). One approach is to estimate
»
A

and »
T

for all possible crosses among founder in-
breds in a breeding program, and to use these estimates
to predict »

A
and »

T
in all the descendant recombinant

inbreds. This procedure may be feasible given the wide-
spread use of second-cycle breeding (Allard 1960,
p 276). In maize, for example, most of the inbreds
belonging to the Iowa Stiff Stalk Synthetic heterotic
group have been derived from B14, B37, or B73 (Baker
1984). In soybean, only ten founder inbreds are esti-
mated to account for 80% of the southern U.S.
germplasm (Gizlice et al. 1994). On the other hand,
estimates of »

A
or »

T
among founder inbreds are not

needed if estimates are available for more recent bi-
parental crosses. Suppose inbred i was derived from the
(P

1
]P

2
)F

2
, and P

1
and P

2
are not founder inbreds.

The»
A

in the (i]j) cross may be predicted directly from
the »

A
in the (P

1
]j) and (P

2
]j) crosses, and estimates

of »
A

in crosses among the ancestral inbreds of P
1

and
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Fig. 2 Variation in additive variance (»
A
) for different genetic

models (a, b, c, d) with unequal »
A

among crosses of founder inbreds
(A]B, A]C, and B]C). Inbreeding coefficients (F) are in paren-
theses. The solid marker indicates the average »

A
whereas the bar

represents a 95% confidence interval

P
2

are not needed. When estimating »
A

or »
T
, the

progenies need to be grown in a large and representa-
tive number of environments so that the effects of
genotype-by-environment interaction are accounted
for.

The simulation results indicated that the use of pedi-
gree-based E(j) in Eq. 1 may lead to erroneous
predicted »

A
or »

T
values. Molecular markers may

account for the effects of drift or selection, or both,
on j (Bernardo et al. 1997) and may lead to better
predictions of »

A
or »

T
. Molecular-marker geno-

types of elite inbreds are often, if not routinely, ob-
tained for varietal protection purposes (Smith and Bea-
vis 1996). Consequently, the need for marker data for
estimating j should not be a severe limitation. We will
be conducting field studies to compare the predicted
and observed »

T
in a set of maize biparental crosses,

using pedigree or molecular-marker information to es-
timate j.
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